oblate$54256$ - перевод на греческий
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

oblate$54256$ - перевод на греческий

THREE-DIMENSIONAL ORTHOGONAL COORDINATE SYSTEM
Oblate spheroidal harmonics; Oblate spheroidal coordinate system
  • Figure 2: Plot of the oblate spheroidal coordinates μ and ν in the ''x''-''z'' plane, where φ is zero and ''a'' equals one. The curves of constant ''μ'' form red ellipses, whereas those of constant ''ν'' form cyan half-hyperbolae in this plane. The ''z''-axis runs vertically and separates the foci; the coordinates ''z'' and ν always have the same sign. The surfaces of constant μ and ν in three dimensions are obtained by rotation about the ''z''-axis, and are the red and blue surfaces, respectively, in Figure 1.
  • Figure 3: Coordinate isosurfaces for a point P (shown as a black sphere) in the alternative oblate spheroidal coordinates (σ, τ, φ). As before, the oblate spheroid corresponding to σ is shown in red, and φ measures the azimuthal angle between the green and yellow half-planes. However, the surface of constant τ is a full one-sheet hyperboloid, shown in blue. This produces a two-fold degeneracy, shown by the two black spheres located at (''x'', ''y'', ±''z'').
  • (1.09, −1.89, 1.66)}}.

oblate      
n. πεπλατυσμένος εις του πόλους

Определение

Prolate
·vt To Utter; to Pronounce.
II. Prolate ·adj Stretched out; extended; especially, elongated in the direction of a line joining the poles; as, a prolate spheroid;
- opposed to oblate.

Википедия

Oblate spheroidal coordinates

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius a {\displaystyle a} in the x-y plane. (Rotation about the other axis produces prolate spheroidal coordinates.) Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors, which contributed to the awarding of the 1926 Nobel Prize in Physics to Jean Baptiste Perrin. These friction factors determine the rotational diffusion of molecules, which affects the feasibility of many techniques such as protein NMR and from which the hydrodynamic volume and shape of molecules can be inferred. Oblate spheroidal coordinates are also useful in problems of electromagnetism (e.g., dielectric constant of charged oblate molecules), acoustics (e.g., scattering of sound through a circular hole), fluid dynamics (e.g., the flow of water through a firehose nozzle) and the diffusion of materials and heat (e.g., cooling of a red-hot coin in a water bath)